A4VTG Series Axial Piston

Variable Pump

Product show and brief introduction

Series 3
Size 90
Nominal pressure 40 MPa
Peak pressure 45 MPa
Closed circuit
for the drum drive in mobile
concrete mixers

Features

- Variable axial piston pump of swashplate design for hydrostatic
- closed circuit transmission
- Flow is proportional to drive speed and displacement and is infinitely variable
- Flow increases with the swivel angle of the swashplate from
 - 0 to its maximum value
- Flow direction changes smoothly when the swashplate is moved through the neutral position
 - Two pressure-relief valves are provided on the high pressure ports to protect the hydrostatic transmission(pump and motor) from overload
 - The high-pressure relief valves also function as boost valves
- The integrated boost pump acts to replenish leakage and provide control oil
- The maximum boost pressure is limited by a built-in boost-pressure-relief valve

A4VTG ...

Size				90
Displacement	variable pump	V g max	mL/r	90
	boost pump(at P=2MPa)	V gh	mL/r	28.3
Speed	maximum at V _{g max}	No max continuou	s min ⁻¹	3050
	minimum	Nmin	min ⁻¹	500
Flow	at n _{max continuous} and V _{gmax}	Q _{v max}	L/min	275
Power ¹⁾	at n _{max continuous} and V _{gmax} △P =	40 MPa Pmax	kW	183
Torque ¹⁾	at V _{g max}	40 MPa Tomax	Nm	572
		10 MPa T	Nm	143
Moment of inertia for rotary group		J	kgm²	0.0106
Weight approx.(without through drive)		m	kg	48

HW-Proportional control, hydraulic, mechanical servo

The flow output of the pump is infinitely varied in the range of 0 to 100%, proportional to the rotation of the control lever between 0° and $\pm 29^{\circ}$ from the spring-centered zero flow porition.

A feedback lever, connected to the stroke piston, maintains the pump flow for any given position of the control lever between 0° and $\pm 29^\circ$

Swivel angle β at the control lever for deflection:

Start of control at β = 3° End of control at β = 29° (max.displacement V_{gmax}) Mech. Stop for β : $\pm 40^\circ$

The maximum required torque at the lever is 170 Ncm. To prevent damage to the HW control unit, a positive mechanical stop must be provided for the HW control lever.

Note: Spring centering enables the pump to move automatically into the neutral position ($V_g=0$) as soon as there is no longer any torque on the control lever of the HW control unit (regardless of deflection angle).

Assignment
Direction of rotation-Control-Direction of through put flow

Direction of rotation	CW		ccw	
Lever direction	Α	В	Α	В
Control pressure	X2	X1	X2	X1
Direction of through put flow	B to A	A to B	A to B	B to A
Operating pressure	MA	Мв	Мв	MA

Designation Size Function A,BService line ф25 M12×1.75;17 deep Fixing thread A/B S Suction M42×2;20 deep Tank M26×1.5;16 deep Measuring pressure A MA, MBM12×1.5;12 deep Measuring pressure B R M16×1.5;12 deep Air bleed Contril pressure X_1, X_2 M12×1.5;12 deep (upstream of orfice) Stroking chamber X_3, X_4 M12×1.5;12 deep pressure Pilot pressure inlet M14×1.5;12 deep Ps

Shaft ands

L Splined shaft 1 1/2in with coupling flange

S Splined shaft 1 1/2in 23 T 16/32DP¹⁾ (SAE J744)

1)ANSI B92.1a-1976.30° pressure angle, flat root, side fit, tolerance class 5.

57 A4VTG ...

Through drive SAE A (F01)

Through drive SAE B(F02)

58

A4VTG ...